Evidence from Chlamydomonas on the photoactivation of rhodopsins without isomerization of their chromophore.

نویسندگان

  • Kenneth W Foster
  • Jureepan Saranak
  • Sonja Krane
  • Randy L Johnson
  • Koji Nakanishi
چکیده

Attachment of retinal to opsin forms the chromophore N-retinylidene, which isomerizes during photoactivation of rhodopsins. To test whether isomerization is crucial, custom-tailored chromophores lacking the β-ionone ring and any isomerizable bonds were incorporated in vivo into the opsin of a blind mutant of the eukaryote Chlamydomonas reinhardtii. The analogs restored phototaxis with the anticipated action spectra, ruling out the need for isomerization in photoactivation. To further elucidate photoactivation, responses to chromophores formed from naphthalene aldehydes were studied. The resulting action spectral shifts suggest that charge separation within the excited chromophore leads to electric field-induced polarization of nearby amino acid residues and altered hydrogen bonding. This redistribution of charge facilitates the reported multiple bond rotations and protein rearrangements of rhodopsin activation. These results provide insight into the activation of rhodopsins and related GPCRs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral sensitivity, structure and activation of eukaryotic rhodopsins: activation spectroscopy of rhodopsin analogs in Chlamydomonas.

Retinal normally binds opsin forming the chromophore of the visual pigment, rhodopsin. In this investigation synthetic analogs were bound by the opsin of living cells of the alga Chlamydomonas reinhardtii; the effect was assayed by phototaxis to give an activation spectrum for each rhodopsin analog. The results show the influence of different chromophores and the protein on the absorption of li...

متن کامل

Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein.

Analysis of the chromophore p-coumaric acid, extracted from the ground state and the long-lived blue-shifted photocycle intermediate of photoactive yellow protein, shows that the chromophore is reversibly converted from the trans to the cis configuration, while progressing through the photocycle. The detection of the trans and cis isomers was carried out by high performance capillary zone elect...

متن کامل

Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow

Analysis of the chromophore p-coumaric acid, extracted from the ground state and the long-lived blue-shifted photocycle intermediate of photoactive yellow protein, shows that the chromophore is reversibly converted from the trans to the cis configuration, while progressing through the photocycle. The detection of the trans and ¢is isomers was carried out by high performance capillary zone elect...

متن کامل

Visual and archaeal rhodopsins: similarities, differences and controversy.

Rhodopsins are currently known to belong to two distinct protein families. The visual rhodopsins, found in eyes throughout the animal kingdom, are photosensory pigments. Archaeal rhodopsins, found in extreme halophiles, function as light-driven proton pumps (bacteriorhodopsins), chloride ion pumps (halorhodopsins), or photosensory receptors (sensory rhodopsins). Light absorption by rhodopsins t...

متن کامل

Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis Isomerization of the chromophore in the protein.

Atomistic QM/MM simulations have been carried out on the complete photocycle of Photoactive Yellow Protein, a bacterial photoreceptor, in which blue light triggers isomerization of a covalently bound chromophore. The "chemical role" of the protein cavity in the control of the photoisomerization step has been elucidated. Isomerization is facilitated due to preferential electrostatic stabilizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 18 6  شماره 

صفحات  -

تاریخ انتشار 2011